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Abstract- This article presents a method of analysis for deriving expressions of the rolling com­
pliance for a system of two elastic particles bonded by a thin layer of elastic or visco-elastic binder.
The governing equations of rolling compliance for this system are Fredholm integral equations of
the second type for which it is very difficult to find closed-form solutions. The method of analysis
is proposed to derive closed-form compliances in the form of the upper and lower bounds. The best
estimate of rolling compliance is then derived based on the upper and lower bound solutions.
,:g 1997 Elsevier Science Ltd.

1. INTRODUCTION

The subject of layer/binder contact frequently occurs in the study of granular/particulate
materials such as asphaltic concrete or cemented sand. This subject is also important in
tribology, involving the mechanical behavior of coated materials. Many topics in this area
have been investigated in the past years (for example, Muki, 1960, Goodman and Keer,
1975, Bentall and Johnson, 1968, Meijers, 1968, Alblas and Kuipers, 1970, Matthewson,
1981, Keer et al., 1991). The normal and tangential compliances for two bonded particles
in compression and sliding can be found in the work by Dvorkin et al. (1991, 1994) for
elastic binder and in the work by Zhu et al. (1996) for visco-elastic binder.

Besides the modes of compression and sliding, rolling of particles is also frequently
observed in particulate materials under a shear deformation. Therefore, modelling for the
rolling compliance is a useful micro-mechanics study that can be used in analyzing the
moment transmitting in a particulate material under shear deformation. In the past, most
studies on rolling contact are related to cylinders rolling on metal plates (Johnson, 1985,
Gladwell, 1980). In this situation, the rolling of cylinders is caused by a pull of the metal
plate between cylinders. The driving force for the rolling of cylinders is the frictional sliding
force developed at the interfacial surface. There is no force-couple at the interfacial surface.
However, in the present problem, the mechanism of rolling is very different from the kinetic
rolling of the cylinders due to the pull-out of a metal plate. The rolling of two particles
generates deformation of the particle-binder system and develops a force-couple at the
interfacial surface. Very few studies can be found on the modelling this type of rolling
mechanism.
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L*(r, p, 8, ¢) = J(rcos 8- pcos ¢)Z + (rsin 8- p sin ¢f.

Substituting eqns (5)-(7) into eqn (4), it follows

wx = WI (r, 8) + wz(r, 8)

p*(r,8) I-viiai2n p*(p,¢)pd¢dp
-h(r)--+--
- Ez nE, 0 0 L*(r,p,8,¢)'

(7)

(8)

We further utilize the concept of Fourier series expansion and substitute p*(p, ¢) with
pep) cos ¢ to eqn (8) (see details in Kanwal's book (1971». After a few steps of manipu­
lation, it yields the relationship between w-p(r), given by:

wr = h(r)p(r) + I - vi ra r2n p(p) cos ¢p d¢ dp
E 2 nE, JoJo L(r,p,¢)

(9)

In eqn (9), the interfacial pressure, pep) cos¢, is related to the resultant rolling couple
Mby: .

ra rZn ra

M= JoJo rp*(r,8)cOS8rd8dr=nJ/(r)rZdr. (10)

It can be seen that eqns (9) and (10) indirectly provide the compliance relationship
between the relative angular movement wand the contact movement M through the
interfacial pressure function per).

3. SOLUTIONS FOR ROLLING COMPLIANCE

3.1. Existing solutions for two limiting cases
The exact solutions of the interfacial pressure function per) in eqn (9) are known for

two limiting cases, namely (1) rigid particle case (i.e., E 1 ~ 00 while Ez is finite), and (2)
rigid binder case (i.e., E 1 is finite while Ez~ 00). The rolling compliance relationship under
these two extreme conditions are described in this section.

Rigid particle case. In the rigid particle case, the relative angular movement of the two
contact bodies is contributed only from the deformation of binder. Thus per) can be easily
determined by (denoted as PI (r» :

E2C~rM

PI (r) = her) ; (11)

where d is the shape parameter defined in eqn (2).
Substituting the interfacial pressure function PI (r) into eqn (9), the corresponding

rolling contact compliance is obtained, given by :

w = C;M. (12)

Rigid binder case. For the case of rigid binder, the exact solution of per) is known
(Johnson, 1985) (denoted as P2(r» and it reads
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in the range of 0:::; d < 1. For a planar interfacial surface, d is zero. For a spherical
interfacial surface, d is given by

a2

d=-­
2Rho

(2)

where R is the radius of the spherical particles. Typical shapes of the interfacial surface are
shown in Fig. I for d = 0 and d = 0.2.

Material properties are denoted by shear moduli GI and G2 and Poisson's ratios VI and
V2 where the subscripts 1 and 2 represent the particle and the binder, respectively. The
Young's modulus £1 and £2 are defined as

(3)

In the particle-binder system, as schematically shown in Fig. 1, both the top and
bottom planes of the particles rotate a degree w above the y-axis. This rolling motion results
in a force couple M about y-axis of the system. The objective of this paper is to establish a
relationship between the force couple M and the relative angular movement w of the two
particles.

The relative angular movement of two particles is developed from deformation of both
the particles and the binder. The bonding condition is assumed to be perfect, i.e., continuity
of displacement and traction at the interfaces between particles and the binder is implied.
Since the displacement in the x-direction are anti-symmetric about the x = 0 plane, the
angular movement w must be contributed from the displacements in the z-direction. Since
the system is symmetric about the z = 0 plane, the z = 0 plane remains immobile and the
relative angular movement w rotating along the y-axis can be separated into two
components, i.e.,

(4)

where WI (r, B) is the displacement in the z-direction at the binder-particle interface (i.e., at
z = h(r)) relative to that at the top plane, and wir, B) is the displacement in the z-direction
at the binder-particle interface relative to that at the z = 0 plane.

We introduce the assumption of a thin layer binder such that we can approximate the
normal strain to be uniform in the z direction across the binder. Let z = 0 be a plane of
symmetry and the binder normal displacement vanishes at z = O. Thus the displacement in
z-direction w2(r, B) can be expressed as follows:

p*(r,B)
W2 (r, B) = h(r)-­

£2
(5)

where p*(r, B) is the interfacial normal pressure between the particle and the binder.
We also assume that the characteristic dimension of the particle is much larger than

that of the particle-binder contact area. Thus, it is justifiable to pursue the analysis of
wI(r, B) based on a half-space premise. Following the well-known Boussinesq's equation,
WI (r, B) can be related to p*(r, 4» by:

where

. _ (1 - vi)iai2n
p*(p,4»p d4> dp

It I (r, B) - * 4>
n£1 0 0 L (r, p, B, )

(6)
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This paper is focused on the rolling compliance of a system of two elastic particles
bonded by a layer of elastic or visco-elastic binder. We aim to derive closed-form relation­
ships between the force couples at the inter-particle binder and the relative angular move­
ment of the two particles. Closed-form expressions are of particular interest because they
can be readily incorporated into discrete element methods for the analysis of a large
assembly of particles.

Progression of the article begins with establishing integral equations that govern the
rolling of two particles bonded by a thin layer of binder. Since this equation is in a
complicated integral form, it is difficult to obtain a solution. A method of analysis is
proposed to derive the upper and lower bounds for the rolling compliance of the two particle
system. Then, it is followed by the derivation of the best estimated rolling compliance.

2. FORMULATION OF THE PROBLEM

Figure 1 shows two identical particles bonded by a binder in a cartesian coordinate
system. A cylindrical coordinate system is also shown in Fig. 1 since the configuration is
axi-symmetric about the z-axis. The system is also symmetric about the z = 0 plane.
Therefore, only upper half of the system shown in Fig. 1 is considered in the analysis. The
interfacial surface between the particle and the binder is represented by the function
z = her), given by

(1)

where a is the radius of contact area, ho is the thickness of the binder at r = O. The
dimensionless shape parameter, d, relating to the curvature of particle surface and is limited

co

Bottomplane~

M

h~h~

I_ a II
(a) d = 0 (b) d = 0.2

Fig. 1. Schematic plot of two particles bonded by a binder in a cartesian coordinate.
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(13 )

Substituting the interfacial pressure function pir) into eqn (9), the rolling compliance
relationship can be obtained accordingly:

where

w=C;M (14)

(15)

Closed-form expressions for rolling compliance are existing for the two limiting cases.
However, for finite £[ and £2 closed-form solutions to eqn (9) are difficult to obtain,
especially when singularity is involved at the edge of the interface between binder and
particle. Therefore, in what follows, we seek for the approximate solutions which represent
the upper and lower bounds. The method of deriving approximate solutions does not
involve the detailed solution of interfacial pressure. Thus, the solution procedure is greatly
simplified.

3.2. Upper bound solution
For the purpose of deriving upper bound solution, we multiply r2/h(r) to eqn (9),

integrate the equation over the range 0 ~ r ~ a, and obtain:

(16)

where C; and C; are the compliances given previously in eqns (12) and (14), and the
functionf(p) is:

and

1
112n cos ¢r2d¢ dr

f(p) = 0 J 2 0 -

00 (1+r"d)(p/a) r +(p/a)--2r(p/a)cos¢

= rl rni2 8r3 cos 2 ¢ d¢ dr

Jo Jo (1+r 2 d)L+L_(L_+L+)

L+ = J r2 + (p/a) 2 + 2r(p/a) cos¢;

L_ = Jr2+(p/a)2-2r(p/a)cos¢.

(17)

(18)

We now have converted the original governing eqn (9) into the new governing eqn
(16) which is in terms of the compliances of the two extreme conditions. This conversion
does not make it easier for analytical evaluation because eqn (16) still contains integral of
the unknown interfacial pressure function. However, this conversion has made it possible
to utilize the monotonic property of f(p) to pursue the upper bound analysis. Since j(p) is



4078 Han Zhu et al.
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Fig. 2. The monotonically decreasing property of the functionf(p).

monotonically decreasing in the range of integration (see Fig. 2), it leads to the following
inequality:

(19)

Note that the integral in eqn (19) is reduced to a simple algebraic form because the function
f(O) has a closed-form expression.

Substituting the inequality of eqn (19) into (16), the upper bound solution for the
rolling compliance is derived as:

where

8d2 tg- J Jd
bJ = > 1.

3n[d-ln(1 +d)]Jd

(20)

(21)

It is noted that we develop the compliance relationship without solving the interfacial
pressure distribution.

3.3. Lower bound solution
Similarly, we can utilize the monotonic property of f(p) to pursue the lower bound

analysis by replacingf(p) withf(a) in eqn (16). However,f(a) does not have a closed-form
expression. Therefore, we pursue the lower bound analysis from an alternative approach.
We convert the original governing equation into a new governing equation using a different
multiplier: We multiply rp2(r) to eqn (9) ; then integrate the equation with respect to the
variable r over the range 0 < r < a, which yields:
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Fig. 3. The monotonically increasing property of the function H(r).

3na[d-In(l +d)] fa
W = c; p(r)H(r)r2 dr+C~M;

4hod2
0

H(r) = her)

Ja2 -r2
(22)

The new governing equation is also in terms of compliances of extreme conditions. It is
easily seen that H(r) in eqn (22) increase monotonically with respect to r in the range
o~ r ~ a as shown in Fig. 3. Employing this monotonic behaviour and setting r = 0 in
H(r), eqn (22) readily leads to the following inequality:

f
a fa h M
p(r)H(r)r2 dr > H(O) p(r)r2 dr = --" -.

o 0 a n
(23)

Substituting the inequality of eqn (23) into (22), the upper bound solution for the
rolling compliance is derived as :

3[d-In(l +d)]
w > (C;b 2 +C;)M; b2 = < I, 0 ~ d ~ I.

4d2
(24)

Based on the upper and lower bound solutions (eqns 20 and 24), the true rolling
compliance must be between

(25)

It is useful to examine the values of b l and b2 which represent a measure for the range of
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Fig. 4. Values of h] and h2 with shape parameter d.

upper and lower compliance bounds. For this purpose, the values of b l in eqn (21) and b2

in eqn (24) are plotted against the shape parameter, d, in Fig. 4.

3.4. Best estimate solution
In this section, we seek the best estimate for the rolling compliance. Two estimates are

conducted. The first estimate is pursued based on the governing eqn (16), and the second
estimate based on the governing eqn (22). From an alternative point of view, instead of
making use of the monotonic behavior to evaluate the upper and lower bounds, we now
select an approximate form for the pressure function to substitute the unknown per) in eqn
(16) or eqn (22). Thus, the relationship between force couple M and rotation ill can be
estimated.

For the estimate based on eqn (16), we select the interfacial pressure P2(P) given in eqn
(13) for the rigid binder case as the substituting pressure function to replace p(p) in eqn
(16). It can be seen that the substituting pressure function satisfy the following two limiting
conditions: (I) For the rigid binder case (EI finite and E2 --> 00), C; is negligible thus this
substitution yields the exact expression of the rigid binder case; and (2) for the rigid particle
case (El --> c:tJ and E2 finite), C; becomes dominant and C;: is negligible, the contribution of
the integral is null. This substitution yields the exact expression of the rigid particle case.

Therefore, substituting the pcp) with P2(P) is a physically consistent approximation,
and it leads to the following simple compliance relationship:

ill = eM; Cr = C;+C;'. (26)

When eqn (22) serves the starting point of the second estimate, we select the interfacial
pressure function PI(P) given in eqn (11) for rigid particle case as the substituting pressure
function for pcp). The argument similar to that given in the first estimate can be stated:
when C~ is negligible (rigid particle case), the substitution yields exact solution; when C""r
becomes negligible (rigid binder case). the contribution of the integral is null in eqn (24),
thus it also yields exact solution. Therefore, substituting the p(p) in eqn (22) with PI (p) is
a physically consistent approximation. It is interesting to note that the second estimate
yields, surprisingly, the same relationship between ill and M as the one given in first estimate
(i.e., eqn (26)).

Since the rolling compliance relationship in eqn (26) satisfies the two limiting cases:
rigid particle case and rigid binder case. In addition, the best estimated compliances fall in
between the upper and lower bounds, i.e., the following inequalities are satisfied:

(27)

We therefore select the rolling compliance relationship given in eqn (26) as the best
estimate for this particle-binder system:
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Particle Compliance, C:

Binder Compliance, C;

Fig. 5. Schematic plot for a serial connection of two compliances C; and C~.

Cr = C~+C:. (28)

Equation (28) indicates that the rolling compliance for the particle-binder system
corresponds to a serial connection of the two compliances c; and C: as schematically shown
in Fig. 5, where C~ represents the compliance of particle and C: represents the compliance
of binder.

3.5. Relationship between rolling compliance and normal compliance
The rolling compliance is directly related to the normal compliance of the particle­

binder system because they both are governed by the normal interfacial pressure. In this
section, the relationship between the rolling compliance and the normal compliance is
investigated.

The normal compliance of a particle-binder system has previously been derived by
Zhu et al. (1995), given by

c5 = CP = (C~+C~)P (29)

where b is the relative normal approach of the two particles, P is the interfacial normal
force, and C~ and C~ are, respectively, the binder and particle compliances given below (see
Zhu et al., 1995) :

I-v2

C,,= __I

n 2aE,
(30)

where d is the shape parameter; a is the radius of contact area; and ho is the thickness of
binder as defined in eqn (2).

Compare eqn (26) and eqn (29), the units of rolling compliance differ from the units
of normal compliance by length squared. According to the derived compliance, the ratio
of rolling compliance to normal compliance for the particle-binder system is inversely
proportional to the contact area. We introduce a constant r as follows:

C~+c:

C~+C~
(31 )

The values of r for different ratios of particle and binder moduli are shown in Fig. 6. The
parameters are: ho = 0.05a, O.la, and 0.5a; VI = 0.2; with value of d = 0.5. The value of r
ranges from 1.5 to 4.3 for various values of moduli ratio. For the case of rigid binder, the
value of r is 1.5. The rolling compliance increases as the binder becomes softer. For very
soft binder (or the rigid particle case), the value of r is 4.3.

4. VISCO-ELASTIC BINDER

In this section we aim to investigate the rolling compliance for two particles with a
visco-elastic binder. Here, we consider two types of visco-elastic binders, namely, Maxwell
and Voigt models.
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Fig. 6. Values of r for different ratios of particle and binder moduli.

4.1. Maxwell model
For Maxwell model, the normal stress-strain relationship in the thin layer of binder is

given by

I I
£2 (r, 8, t) = -Ep(r, 8, t) + - p(r, 8, t)

2 1]
(32)

where the symbol (') denotes the derivative with respect to t. 1] is the viscosity constant for
the binder. In its integral representation, the stress-strain relationship reads

_ p*(r,8,t) I it * .
G2(r,8,t) - E +- P (1,8,r)dr

2 1] 0

(33)

where G2(r, 8, t) denotes the normal strain, p*(r, 8, t) denotes the normal stress.
Considering two particles bonded by a binder of Maxwell type, the governing integral

equation in eqn (9) becomes:

and

p(r,t) her) it (1- v
2
) i2"i" p(p,t) cos ¢p dp d¢w(t)r = h(r)-- + - p(r, r) dr+-- .-

E 2 1] 0 nEt 0 0 R(r, p, ¢)

r2
" r"M(t) = nJo Jo per, t)r

2
dr.

(34)

(35)

Again, we attempt to derive an upper and a lower bound compliances for the case of
Maxwell binder. In analogy to the derivation procedure for the elastic binder case, the
upper bound analysis begins with multiplying r2jh(r) to eqn (34), then integrating over the
range 0 ~ r ~ a. The result is :
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2 r"w(t) = C; M(t)+-¢JoM(T)dT +C~3n[d-In(l+d)JJ/(p)p(p)p2dp.
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(36)

By utilizing the monotonic behavior of f(p), we obtain the upper bound solution for
the time dependent rolling compliance:

CE itw(t) ~(C;+blC;)M(t)+_r_2 M(T)dT.
1] 0

(37)

For the lower bound analysis, we multiply rpir) to eqn (34), and then integrate the
equation over the ranges 0 ~ r ~ a, which yields:

3 f"(p(r,t) it p(r,r) ) h(r)r
2

dr
w(t)=- -E + --dr ~+C~M(t).

2a3
0 2 0 1] y a2

- r2

The lower bound can then be derived from eqn (38) by setting r = 0 in

h(r)

(38)

(39)

Similar to the procedure used in the last section, the first approximate solution can be
obtained by replacingp(r, t) in eqn (36) with the existing rigid particle solution. The second
approximate solution can be obtained by replacingp(r, t) in eqn (38) with the existing rigid
binder solution. It turns out that both approximations lead to an identical solution. The
best estimate rolling compliance is thus given by:

E itw(t) =(C;+C;)M(t)+C;~ M(r)dr
1] 0

and its rate-dependent form:

. E 2
w(t) = (C+C;)M(t)+C;-M(t).

1]

4.2. Voigt model
The normal stress-strain relationship for the Voigt binder is given by

or in its integral representation:

(40)

(41)

(42)

(43)

Accordingly, the governing integral equation for the interfacial pressure and the
relative angular movement of two particles becomes
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wet) = her) ('p(r, r)e-(E2!~)(,-r)dr + (1- v
2) (2n (a p(p,t) cos ¢p dp d¢ . (44)

'1 Jo nE J Jo Jo R(r,pho, ¢)

The derivation process of compliance relationships for Voigt binder is similar to that
for Maxwell binder. Therefore, we list only the final results which include: an upper bound
solution, a lower bound solution, and a best estimate based on physical approximation.

The upper bound solution is

(45)

The lower bound solution is

(46)

Following the similar procedure in the last section, the best estimate of rolling com­
pliance is obtained

E i'w(t) = C;M(t) + C~~ M(r)e-(E2!~)(t-T) dr
'1 0

and its rate-dependent version is

Eo . E2
wet) + -=-w(t) = C;M(t) + (C~ + C~') - M(t).

'1 '1

(47)

(48)

4.3. Equivalent spring-dashpot system
We now view the particle-binder system as an equivalent system that consists of two

rigid particles connected by springs and dashpot. Let C~ and Cf be, respectively, the spring
compliance for the binder and the particle, and f3 be the dashpot coefficient.

The relationship between wet) and M(t) in the equivalent spring-dashpot system of
Maxwell model (i.e., Fig. 7a) is given by

wet) =(C~+CnM(t)+Mit)· (49)

For the equivalent spring-dashpot system of Voigt model (i.e., Fig. 7b), the compliance
relationship is given by

Particle Compliance Particle Compliance

Binder Compliance Binder Compliance

(a) Maxwell Binder (b) Viogt Binder
Fig. 7. Equivalent spring-dashpot systems of (a) Maxwell model and (b) Voigt model.
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(50)

For the Maxwell model, we compare eqn (49) for the spring-dashpot system with the
analytical solution (eqn (41» for the particle-binder system. The comparison yields that
C~ = C~ and C~ ~ C; for the spring compliances of the equivalent system and the dashpot
coefficients Pof the equivalent system is :

IJ 3 an(d-In(l+d)
P= E2C~ = lJa' h

o
2d2 .... (51 )

Note that the dashpot coefficient Phas a unit of force-length-time while the viscosity IJ of
the binder has the unit of force-time/length squared. The dashpot coefficient is proportional
to the cubic of contact radius.

For the Voigt model, we compare eqn (50) for the spring-dashpot system with the
analytical solution (eqn (48» for the particle-binder system. The comparison yields the
identical equivalent spring compliances and equivalent dashpot coefficients as those
obtained from the Maxwell model. This property of model independence indicates that it
is a plausible approach to use the spring and dashpot elements for the simulation of an
assembly of particles.

The study presented here suggests that the compliance of a system consisting of two
elastic particles with visco-elastic binder can be simulated by an equivalent spring-dash pot
system. When the binder is elastic, the representation of compliance is equivalent to a two
spring-element system in serial connection described in Fig. 5. When the binder is viscous
of Maxwell type or Voigt type, we observe that the compliances can be schematically shown
in Fig. 7a and Fig. 7b.

5. CONCLUSIONS

Rolling compliances have been derived for a system comprised of two elastic particles
bonded by a thin layer ofelastic or visco-elastic binder. Rolling of the two particles generates
deformation of the particle-binder system and develop a force-couple at the interfacial
surface. The rolling mechanism in present study is very different from that studied previously
in the literature on the rolling ofcylinders caused by a pull-out of metal plate. In the present
problem, there is no solution available for the rolling compliance because the governing
equation is of a complicated Fredholm type.

The method of analysis presented in this paper is different from the conventional
approach. We do not directly solve for the exact distribution of the interfacial pressure.
Instead, we alter the formulation and solve indirectly for the rolling compliance. Because
it is not necessary to find the exact solution of the interfacial pressure, the approach makes
it possible to yield closed-form expressions for the rolling compliance.

The method of analysis presented in this paper can be applied to solve any other
integral equations of Fredholm type. The technique of employing the monotonic property
of the kernel function is very effective in establishing upper and lower bounds for the true
solution. The present method of analysis is worthwhile to be explored since integral equa­
tions of Fredholm type are common form of governing equations for a wide range of
mechanical systems.

The results show that the rate-dependent compliance relationship for a system of two
elastic particles bonded by a thin layer of visco-elastic binder is equivalent to a spring­
dashpot system. This concept is potentially advantageous to the analysis of assemblies with
a large number of particles bonded by visco-elastic binders. In the analysis of an assembly
of bonded particles, the rolling compliance between particles accounts for the transmitting
of force couples. It is particularly useful in the studies of stress and strain of particulate
materials under shearing deformation.
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